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Abstract

 Vibration acceleration levels on large space platforms exceed the requirements of many

space experiments.  The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian

Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the

Russian Space Station Mir since May 1996.  It has demonstrated good isolation performance and

has supported several materials science experiments.  The MIM uses Lorentz (voice-coil) magnetic

actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack)

level.  Payload acceleration, relative position, and relative orientation (Euler-parameter)

measurements are fed to a state-space controller.  The controller, in turn, determines the actuator

currents needed for effective experiment isolation.  This paper presents the development of an

algebraic, state-space model of the MIM, in a form suitable for optimal controller design.  The

equations are first derived using Newton’s Second Law directly; then a second derivation (i.e.,

validation) of the same equations is provided, using Kane’s approach.

____________________________________
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station

show acceleration environments that are noisier than expected [1].  The acceleration environment

on the International Space Station (ISS) likewise will not be as clean as originally anticipated; the

ISS is unlikely to meet its microgravity requirements without the use of isolation systems [1], [2].

While the quasi-static acceleration levels due to such factors as atmospheric drag, gravity gradient,

and spacecraft rotations are on the order of several micro-g, the vibration levels above 0.01 Hz are

likely to exceed 300 micro-g rms, with peaks typically reaching milli-g levels [3].  These

acceleration levels are sufficient to cause significant disturbances to many experiments that have

fluid or vapor phases, including a large class of materials science experiments [4].

The Microgravity Vibration Isolation Mount (MIM) is designed to isolate experiments from

the high frequency (>0.01 Hz) vibrations on the Space Shuttle, Mir, and ISS, while passing the

quasi-static (<0.01 Hz) accelerations to the experiment [5].  It can provide up to 40 dB of

acceleration attenuation to experiments of practically unlimited mass [6].  The acceleration-

attenuation capability of the MIM is limited primarily by two factors: (1) the character of the

umbilical required between the MIM base (stator) and the MIM experiment platform (flotor), and

(2) the allowed stator-to-flotor rattlespace.  A primary goal in MIM design was to isolate at the

individual experiment, rather than entire rack, level; ideally the MIM isolates only the sensitive

elements of an experiment.  This typically results in a stator-to-flotor umbilical that can be greatly

reduced in size and in the services it must provide.  In the current implementation, the umbilical

provides experiments with power, and data-acquisition and control services.  Even with the

approximately 70-wire umbilical the MIM has demonstrated good isolation performance [5].

The first MIM unit was launched in the Priroda laboratory module which docked with Mir

in April 1996.  The system has been operational on Mir since May 1996 and has supported several

materials science experiments.  An upgraded system (MIM-2) was flown on the U.S. Space Shuttle

on mission STS-85 in August 1997 [5].
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In order to design controllers for the MIM it was necessary to develop an appropriate

dynamic model of the system.  The present paper presents an algebraic, state-space model of the

MIM, in a form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional

experiment platform was studied extensively by Hampton [7].  It was found that optimal control

techniques could be effectively employed using a state-space system model, with relative-position,

relative-velocity, and acceleration states.  The experiment platform was assumed to be subject to

Lorentz (voice-coil) electromagnetic actuation, and to indirect (umbilical-induced) and direct

translational disturbances.

The task of the research presented below was to develop a corresponding state-space model

of the MIM.  Translational and rotational relative-position, relative-velocity, and acceleration states

were to be included, with the rotational states employing Euler parameters and their derivatives.

The MIM dynamic model must incorporate indirect and direct translational and rotational

disturbances.

System Model

A schematic of the MIM is depicted in Figure 1.  The stator, defined in reference

frameΟS , is rigidly mounted to the orbiter.  The flotor, frameΟF , is magnetically levitated above

the stator by eight Lorentz actuators (two shown), each consisting of a flat racetrack-shaped

electrical coil positioned between a set of Nd-Fe-Bo supermagnets.  The coils and the

supermagnets are fixed to the stator and flotor, respectively.  Control currents passing through the

coils interact with their respective supermagnet flux fields to produce control forces used for flotor

isolation and disturbance attenuation [8].

The flotor has mass center F∗ and a dextral coordinate system with unit vectors 
1

� ,f  
2

� ,f  and

3

� ,f  and origin F0.  The stator (actually, stator-plus-orbiter) has mass center S∗ and a dextral

coordinate system with unit vectors 
1
� ,s  

2
� ,s  and 

3
� ,s  and origin S0.  The inertial reference
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frameΟN is similarly defined by 
1
� ,n

2
� ,n  and 

3
� ,n  and origin N0.  The umbilical is attached to the

stator at Su, and to the flotor at Fu.  When the flotor is centered in its rattlespace (the “home”

position), F∗ and Fu are located at stator-fixed points Fh
* , and Fuh, respectively.

State Equations of Motion

Translational Equations of Motion

 Let E be some flotor-fixed point of interest for which the acceleration is to be determined.

If E has inertial position 
0N E

r , then its inertial velocity and acceleration are ( )N E

N

N E
r

d

dt
r� =  and

( )N E

N N

N E
r

d

dt

d

dt
r�� =









 , respectively.  (The presuperscript indicates the reference frame of the

differentiations.  The subscripts indicate the vector origin and terminus.)  The angular velocity and

angular acceleration of the flotor with respect to the inertial frame are represented by N Fω  and

N Fα , respectively, where ( )N F
N

N Fd

dt
α ω= .
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Let F be the resultant of all external forces acting on the flotor; M F F*

(or simply M), the

moment resultant of these forces about F*; m, the flotor mass; and I F F*

(or I ), the central inertia

dyadic of the flotor for 
1

� ,f
2

� ,f  and 
3

� .f   Then Newton’s Second Law for the flotor can be

expressed in the following two forms:

F mrN F= �� *
0

  (Eq. 1)

and ( )M I IN F N F N F= ⋅ + × ⋅α ω ω .  (Eq. 2)

From Equation (2), 

( )[ ]N F N F N FI M Iα ω ω= ⋅ − × ⋅−1 .  (Eq. 3)

It will be useful to find an expression for ��r N E0
in terms of the acceleration ��r N Su0

of the umbilical

attachment point uS , and in terms of the extension of the umbilical from its relaxed position.

Begin with the following: r r r r rS F N E EF N S S S= + − −
0 0

. (Eq. 4)

Differentiation of Equation (4) yields

� � �r r r r rS F N E
N F

EF N S
N S

S S= + × − − ×
0 0

ω ω .  (Eq. 5)

A second differentiation gives

( ) ( )�� �� ��r r r r r r rS F N E
N F

EF
N F N F

EF N S
N S

S S
N S N S

S S= + × + × × − − × − × ×
0

α ω ω α ω ω . (Eq. 6)

Substitution for N Fα from Equation (3) into Equation (6) yields

( )[ ]{ }
( ) ( )

�� �� ��

.

r r I M I r r r

r r

S F N E
N F N F

EF N S
N S

S S

N S N S
S S

N F N F
EF

u u
= + ⋅ − × ⋅ × − − ×

− × × + × ×

−
0

0

1 ω ω α

ω ω ω ω
(Eq. 7)

In these equations

N F N S S Fω ω ω= + . (Eq. 8)
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Under the assumptions that N Sω  and N Sα are negligibly small and, therefore, that

�� ��r rN S N Su
≈ , (Eq. 9)

Equation (7) reduces to

( )[ ]{ } ( )�� �� �� .r r I M I r r rS F N E
S F S F

EF N S
S F S F

EFu u
= + ⋅ − × ⋅ × − + × ×−

0 0

1 ω ω ω ω (Eq. 10)

Linearization about  S Fω = 0  yields the following result:

{ }�� �� ��r r I M r rS F N E EF N S= + ⋅ × −−1 . (Eq. 11)

Appropriate expressions for F and M will now be determined, for substitution into Equations (1)

and (11), respectively.  Those equations will be used in turn to obtain a more useful expression for

��r S Fu u
.  [See Equations (43-48).]

The force resultant F is the vector sum of the eight actuator (coil) forces 
c

i

F i( ,..., )= 1 8 ,

with resultant Fc; of the umbilical force Fut, caused by umbilical extensions from the relaxed

position; of the direct disturbance forces, with resultant Fd; and of the gravitational force Fg.

Gravity may be neglected for a space vehicle in free-fall orbit.  The moment resultant M is the

vector sum of the moments due to the coil forces, with resultant M c ; of the moment M ut  due to

the umbilical force F ut ; of the moment M ur  due to the umbilical rotations from the relaxed

orientation; and of the moment M d  due to the direct disturbance forces.  There is no moment due

to gravity, since M is about the flotor center of mass F*.  In equation form, assuming the ith coil

force to be applied at flotor-fixed point Bi,

F F F Fc
i

i
ut d= + +

=
∑

1

8

(Eq. 12)

and M r F r F M MF B
i

c
i

F F ut ur d= × + × + +
=
∑

1

8

. (Eq. 13)
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More explicit expressions for F c
i and F ut will now be developed.  If the actuator has coil

current I Ii i
� , length Li , and magnetic flux density B Bi i

� , then the associated actuator force

becomes

F I L B I Bc
i

i i i i i= − ×� � . (Eq. 14)

Assume a translational stiffness Kt
i  for an umbilical elongation in the 

i
s� direction, and a

corresponding translational dampingCt
i .  Let F b  represent the umbilical bias force, exerted by the

umbilical on the flotor in the home position.  Then the total force of the umbilical on the flotor

becomes

( )[ ] ( )F K r r s s C
d

dt
r r s s Fut t

i
S F S F i i t

i
N

S F S F i i
ii

b= − − ⋅ + − ⋅





















+

==
∑∑ � � � �

1

3

1

3

. (Eq. 15)

Define the following, for i = 1 2 3, , :

( )x r r sai S F S F i= − ⋅ � (Eq. 16)

and x xbi ai= � . (Eq. 17)

If  N Sω ≈ 0 , Equation (15) becomes

( )F K x C x s Fut t
i

ai t
i

bi i
i

b= − +







 +

=
∑ �

1

3

. (Eq. 18)

The relative positionsxai and the relative velocitiesxbi  will be six of the nine translational states

used in the state-space formulation of the system equations of motion.

As with F c
i and F ut above, M ur can also be expressed in more explicit form, in analogous

fashion.  Assume a rotational stiffness Kr
i and a rotational damping Cr

i , for umbilical twist about

the 
i

s� direction.  Let 
φφ F Sn�  represent the rotation of the flotor, relative to the stator, from the
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relative position in which the 
i

f�  and 
i

s�  coordinate systems are aligned. 
φ

F Sn� is the rotation axis,

and φ is the angle of twist about that axis.  LetM b represent the umbilical bias moment, exerted by

the umbilical on the flotor in the home position.  Then the moment M ur can be expressed by the

following:

( )[ ] ( )M K n s s C
d

dt
n s s Mur r

i F S
i i r

i
N

F S
i i

ii
b= − ⋅ + ⋅






















+

==
∑∑ φ φ� � � � � �φ φ

1

3

1

3

, (Eq. 19)

or ( )[ ] ( )[ ]M K n s s C n n s s Mur r
i F S

i i r
i F S F S

i i
ii

b= − ⋅ + + ⋅








+
==
∑∑ φ φ φ� � � � � �� � �φ φ φ

1

3

1

3

. (Eq. 20)

Equation (20) can be expressed in alternate form using Euler parameters.  Let
φ

F Sn� be

described inΟS by

    
φ

F Sn e s e s e s� � � �= + +1 1 2 2 3 3. (Eq. 21)

Define the following Euler parameters [9].

F Sβ
φ
20 = cos , (Eq. 22)

( ) sinS F S eβ
φ
21 = 1 , (Eq. 23)

( ) sinS F S eβ
φ
22 = 2 , (Eq. 24)

( ) sinS F S eβ
φ
23 = 3 , (Eq. 25)

and
φ

F S F Snβ
φ

=sin 2
� . (Eq. 26)

For small values of φ, the Euler parameters can be simplified:

F Sβ0 ≈1, (Eq. 27)
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( )S F S eβ φ1 = 1 2 , (Eq. 28)

( )S F S eβ φ 22 = 2 , (Eq. 29)

( )S F S eβ φ 23 = 3 , (Eq. 30)

and
φ

F S F Snβ
φ

= 2
� . (Eq. 31)

Note that, for small angles,

φφ βF S F Sn� = 2 . (Eq. 32)

This equation can be used to simplify the stiffness terms of Equation (20).

As for the damping term, Equation (31) can be differentiated to yield

F S F S F Sn n�
�

� ��β
φ
2

φ
2

φ
2φ φ

= +cos sin , (Eq. 33)

or, for small angles, 2
F S

F S F S
n n� � � ��β φ φ= +

φ φ
. (Eq. 34)

Equation (20) now becomes

( ) ( )M K s s C s s Mur r
i F S

i i r
i F S

i i
ii

b= − ⋅ + ⋅







 +

==
∑∑2

1

3

1

3

β β� � � � � . (Eq. 35)

Define the following, for i = 1 2 3, , :

x sdi
F S

i= ⋅β � (Eq. 36)

and x xei di= � . (Eq. 37)

The assumption that N Sω is negligible yields, finally,

[ ]M K x C x s Mur r
i

di r
i

ei i
i

b= − +







+
=
∑2

1

3

� . (Eq. 38)
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Note that Equation (11) describes ��r S Fu u
in terms of the acceleration of an arbitrary flotor-

fixed point E.  For E located at flotor mass center F *,  Equation (11) can be used straightforwardly

with Equation (1) to yield

( )�� ��*r
m

F I M r rS F F F N S= + ⋅ × −−1 1

0
. (Eq. 39)

Define now three unknown-acceleration terms, to be used with Equation (39).  The first term

represents the indirect translational acceleration disturbance input to the flotor, applied at the stator

end of the umbilical:

a rin N Su
= ��

0
. (Eq. 40)

The second term represents the direct translational acceleration disturbance to the flotor, due to

unknown disturbance force F d :

a
m

Fd d=
1

. (Eq. 41)

And the third represents the direct angular acceleration disturbance input to the flotor, due to F d :

αd dI M= ⋅−1 , (Eq. 42)

Substitution from Equations (12), (13), (14), (18), (38), (40), (41), and (42) into (39) yields the

following result:

( ) ( )��r
m

F F I M M M r r a aS F c ut c ut ur F F d F F in du u
= + + ⋅ + + × + × − +−1 1 α , (Eq. 43)

where ( )F F I L B I Bc c
i

i
i i i i i

i

= = − ×
= =
∑ ∑

1

8

1

8
� � , (Eq. 44)

( )F K x C x s Fut t
i

ai t
i

bi i
i

b= − +







 +

=
∑ �

1

3

, (Eq. 45)

( )M M r I L B I Bc c
i

i
F B

i
i i i i ii

= = × − ×
= =
∑ ∑

1

8

1

8

*
� � , (Eq. 46)
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( )M r K x C x sut F F t
i

ai t
i

bi i
i

u
= − × +









=
∑* �

1

3

, (Eq. 47)

and [ ]M K x C x s Mur r
i

di r
i

ei i
i

b= − +







+
=
∑2

1

3

� . (Eq. 48)

Substitution from Equation (43) into Equation (11) produces the following equation for the

acceleration of arbitrary flotor point E:

( ) ( )��r
m

F F I M M M r r aN E c ut c ut ur F E d F E d0

1 1= + + ⋅ + + × + × +− α . (Eq. 49)

Assuming N Sω to be negligible, one also has the following:

( )�r
d

dt
rS F

S

S F= , (Eq. 50)

and ( )��r
d

dt
rS F

S

S F=
2

2 . (Eq. 51)

(Note that assuming N Sω  to be negligible does not imply that ΟS and ΟN are identical; it means

rather that ΟS can be treated as if it is in pure translation relative to ΟN for the frequencies of

interest.)  Equations (43), (49), (50), and (51) provide the basis for a state-space form of the

translational equations of motion, using xai , xbi ,  and low-pass-filtered approximations to the �si

components of  ��r N E0
[see Equations (94) and (99)], as states.

Rotational Equations of Motion

Let 
φ

F S F Snβ
φ

=sin 2
� as before [Eq. (26)].  Differentiating the left side twice produces

( ) ( )N

F S

S

F S N S F Sd
dt

d
dtβ β β= + ×ω (Eq. 52)

and ( ) ( ) ( )
N

F S
S

F S N S
S

F S N S F S N S F Sd
dt

d
dt

d
dt

2

2

2

2β β β β β= + × + × + ×ω ω ω� � . (Eq. 53)
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Assuming as before that N Sω ≈ 0 , Equations (52) and (53) become, respectively,

( )F S
S

F Sd
dt

�β β= (Eq. 54)

and ( )F S
S

F Sd
dt

��β β=
2

2 . (Eq. 55)

Returning to Equation (26), two differentiations of the right side yield

( )N

F S F S F S F S F Sd
dt

n n n n
2

2 2 2 2 2 2 2
β

φ φ φ φ
φ φ φ= −





 + +

��

�

�
� � �� ��� cos sin cos sin

2

φ φ φ φ . (Eq. 56)

Linearizing about φ = 0and �φ = 0 , Equation (56) becomes

2 2
F S F S F S F S

n n n�� �� � � �� ���β φ φ φ= + +φ φ φ . (Eq. 57)

Equations (34), (54), (55), and (57) provide the basis for a state-space form of the rotational

equations of motion, using as states the �si components of F Sβ and of 
F S

�β  (i.e., xdi and xei ,

respectively, for i = 1 2 3, , ).

Equations of Motion in State-Space Form

From Equation (16),

r r x s x s x sS F S F a a a− = + +1 1 2 2 3 3� � � . (Eq. 58)

Differentiation, along with the use of Equations (17) and (50), leads to the following:

� � � � �r r x s x s x sS F S F b b b− = + +1 1 2 2 3 3. (Eq. 59)

A second differentiation yields

�� �� � � � � � �r r x s x s x sS F S F b b b− = + +1 1 2 2 3 3. (Eq. 60)

Introduce the use of a presuperscript in parentheses to indicate the coordinate system used for

componentiation.  (This notation allows vectors to be expressed unambiguously in terms of their
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measure numbers.)  Then Equations (58) and (59) take the respective forms,

( ) ( )S
S F

S
S F

a

a

a

ar r

x

x

x

x− =











=

1

2

3

(Eq. 61)

and ( ) ( ) ( )
� � � � ,S

S F
S

S F
S

S F a br r r x x− = = = (Eq. 62)

where xa  and xb  are defined as indicated.  xd  and xe  have corresponding definitions.  [Cf.

Equations (36) and (37).]

Equations (43) and (60) can be used together to develop a state-space equation for �xb .

First, express Equation (60) in measure-number form:

( )
��

�

�

�

�
S

S F

b

b

b

br

x

x

x

x
u u

=

















=
1

2

3

. (Eq. 63)

Next, define rotation matrix S FQ by

�

�

�

�

�

�

s

s

s

Q

f

f

f

S F
1

2

3

1

2

3

















=



















   , (Eq. 64)

where the prefix indicates the rotation of frameΟS relative to frameΟF .   Finally, observe that, for

arbitrary vectors

r x f y f z f1 1 1 1 2 1 3
= + +� � � (Eq. 65)

and r x f y f z f2 2 1 2 2 2 3
= + +� � � , (Eq. 66)

the cross product can be expressed in determinant form by

r r

f f f

x y z

x y z
1 2

1 2 3

1 1 1

2 2 2

× =

� � �

, (Eq. 67)
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or in matrix form (i.e., using measure numbers) [9], by

( )( )F
r r

z y

z x

y x

x

y

z
1 2

1 1

1 1

1 1

2

2

2

0

0

0
× =

−
−

−

































 .  (Eq. 68)

Represent the above skew-symmetric matrix by ( )F r 1
× .  Using this notation, Equation (43) can be

expressed as follows:

[ ] [ ]�
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* *x
m

F F Q r I M M M Q r I M a ab
S

c
S

ut
S F F

F F
F

c
F

ut
F

ur
S F F

F F
F

d
S

in
S

du u
= + − + + − − +× − × −1 1 1 , (Eq. 69)

where I is the inertia matrix corresponding to I  .

Linearizing Equation (3) about N Fω = 0  yields

N F I Mα = ⋅−1 . (Eq. 70)

But ( )N F
N

F S F S F S F Sd

dt
n n n nα = = + +

2

2 2φ φ φ φφ φ φ φ� �� � � �� ��� . (Eq. 71)

From Equations (57), (70), and (71),

2 1F S
I M��β = ⋅− , (Eq. 72)

or, equivalently, ( )2
2

2

1
N

F Sd

dt
I Mβ













= ⋅− . (Eq. 73)

Application of Equation (55) leads directly to

( )
S

F Sd

dt
I M

2

2

11

2
β = ⋅− . (Eq. 74)

In measure-number form,

�
( )x Q I Me

S F F= −1
2

1 , (Eq. 75)

or, equivalently, [ ]�
( ) ( ) ( ) ( )x Q I M M M Qe

S F F
ut

F
ur

F
c

S F F
d= + + +−1

2

1

2
1 α . (Eq. 76)
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Six state equations of the system are given by Equations (17) and (37), iterating on i; six

more, by Equations (69) and (76).  The latter six are written in terms of the various forces and

moments acting on the system, which loads have been defined in vector form by Equations (44)

through (48).  These loads can be rewritten in measure-number form and substituted into Equations

(69) and (76), as follows.  Beginning with Equation (44), the ith control force can be expressed as

[ ]( ) ( ) ( )
� �S

c
i

i

S

i
S F

i

F

i i c
i

iF L I Q B B I F u= − =
×

, (Eq. 77)

The resultant control force becomes

 ( ) ( )S
c

S
c
i

i
cF F F u= =

=
∑

1

8

, (Eq. 78)

where Fc
i , Fc , ui , and uare defined as indicated.

Next, using Equation (61) with (45), the translational force the umbilical exerts on the

flotor can be expressed by

( ) ( ) ( )S
ut t a t b

S
b uta a utb b

S
bF K x C x F F x F x F= − − + = + + , (Eq. 79)

where K

K

K

K
t

t

t

t

=
















1

2

3

0 0

0 0

0 0

, (Eq. 80)

C

C

C

C
t

t

t

t

=
















1

2

3

0 0

0 0

0 0

, (Eq. 81)

and Futa and Futbare defined as indicated.

The ith control force F c
i exerts on the flotor a moment M c

i , defined by Equation (46).

Using again the notation introduced with Equation (68), this moment can be expressed by

[ ]( ) ( ) ( ) ( )
*

� �F
c
i

i i
F

F B
S F T S

i
S F F

i i c
i

iM L B r Q I Q B I M u
i

= − =× ×
, (Eq. 82)
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and the resultant moment by

( ) ( )F
c

F
c
i

i
cM M M u= =

=
∑

1

8

, (Eq. 83)

whereMc
i and Mc are defined as indicated.

The umbilical force Fut exerts on the flotor a momentM ut , given by Equation (47).

Substituting from Equation (79), this moment can be expressed by

[ ]( ) ( )
*

F
ut

F
F F

S F T
uta a utb bM r Q F x F x

u
= +× ; (Eq. 84)

or, alternatively, ( )F
ut uta a utb bM M x M x= + , (Eq. 85)

for Mutaand Mutb  appropriately defined.

Finally, Equation (48) expresses the moment Mur that the umbilical applies to the flotor due

to umbilical rotational stiffness.  The following equations express Mur in measure-number form:

( ) ( ) ( )F
ur

S F T
r d

S F T
r e

F
b urd d ure e

F
bM Q K x Q C x M M x M x M= − − + = + +2 2 , (Eq. 86)

where K

K

K

K
r

r

r

r

=
















1

2

3

0 0

0 0

0 0

, (Eq. 87)

C

C

C

C
r

r

r

r

=
















1

2

3

0 0

0 0

0 0

, (Eq. 88)

and Murd and Mureare appropriately defined.

Substituting from Equations (77) through (88), Equations (69) and (76) become, respectively,

( ) ( )

�
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
*

x
m

F Q r I M x
m

F Q r I M x

Q r I M x Q r I M x
m

F Q r I M u

a a
m

F Q r

b uta
S F F

F F uta a utb
S F F

F F utb b

S F F
F F urd d

S F F
F F ure e c

S F F
F F c

S
in

S
d

S
b

S F F
F F

F
d

S

u

= −





+ −





+ − + − + −





− + + − −

× − × −

× − × − × −

×

1 1

1

1

1 1

1 1 1

α F F
F F

F
bQ r I M

u

( ) ( )
*

× − 1

(Eq. 89)
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and

[ ]�

.( ) ( )

x Q I M x M x M x M x

Q I M u Q Q I M

e
S F

uta a utb b urd d ure e

S F
c

S F F
d

S F F
b

= + + +

+ + +

−

− −

1

2
1

2

1

2

1

2

1

1 1α
(Eq. 90)

For completeness, Equation (37) can be rewritten as �x xd e= . (Eq. 91)

To include ( )
��

S
N Er

0
as states, define xc  by

ω ωh
S

N E c h cr x x( )
�� �

0
= + , (Eq. 92)

for some high value of circular frequency ω h .  Taking the Laplace Transform,

{ } { }c

h

h
EN

S x
s

s
r LL 




 +
=

2

)(

0 ω
ω

, (Eq. 93)

so that  x rc
S

N E h≈ ( )
��

0
 for <<ω ω . (Eq. 94)

Now using Equations (78), (79), 83), (85), (86), and (92) with (49),

( ) ( )

�

( ) ( )

( ) ( ) ( )

( ) ( ) (

* *x
m

F Q r I M x
m

F Q r I M x x

Q r I M x Q r I M x
m

F Q r I M u

a
m

F Q

c h uta
S F F

F E uta a h utb
S F F

F E utb b h c

h
S F F

F E urd d h
S F F

F E ure e h c
S F F

F E c

h
S

d h
S

b h
S F F

= −



 + −





−

− − + −





+ + 





−

× − × −

× − × − × −

ω ω ω

ω ω ω

ω ω ω

1 1

1

1

1 1

1 1 1

( ) ( )) ( ) ( ) ( ) .r Q r I MF E
F

d h
S F F

F E
F

b
× × −−α ω 1

(Eq. 95)

A state-space representation of the system is given by Equations (62), (89), (90), (91), and

(95), for state vector

x

x

x

x

x

x

a

b

c

d

e

=



























.  (Eq. 96)
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For the small rotation angles associated with the MIM, S FQ  is approximately equal to the 3 3×

identity matrix, in which case the state equations have constant coefficients.  Specifically,

� ,x xa b= (Eq. 97)

( ) ( )

�

,

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

x
m

F r I M x
m

F r I M x

r I M x r I M x
m

F r I M u

a a
m

F r r I M

b uta
F

F F uta a utb
F

F F utb b

F
F F urd d

F
F F ure e c

F
F F c

S
in

S
d

S
b

F
F F

F
d

F
F F

F
b

= −





+ −





− − + −





− + + − −

× − × −

× − × − × −

× × −

1 1

1

1

1 1

1 1 1

1α

(Eq. 98)

( ) ( )

�
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
*

x
m

F r I M x
m

F r I M x x

r I M x r I M x
m

F r I M u

a
m

F r I

c h uta
F

F E uta a h utb
F

F E utb b h c

h
F

F E urd d h
F

F E ure e h c
F

F E c

h
S

d h
S

b h
F

F E
F

d
F

= −



 + −



 −

− − + −





+ + 



 − +

× − × −

× − × − × −

× −

ω ω ω

ω ω ω

ω ω ω α

1 1

1

1

1 1

1 1 1

1( )Mb ,

(Eq. 99)

� ,x xd e= (Eq. 100)

[ ]

( )
�

.( ) ( )

x I M x M x M x M x

I M u I M

e uta a utb b urd d ure e

c
F

d
F

b

= + + +

+ + +

−

− −

1

2
1

2

1

2

1

1 1α
(Eq. 101)

State-Space Equations With MIM-2 States

The above state equations must be modified to account for the states actually used in

MIM-2.  Designate by the post-superscript R the states defined above; and by the post-superscript

C the states used with MIM-2.  The former set of states are as follows, for i = 1 2 3, , :

x r sai
R

F F iuh u
= ⋅ � , (Eq. 102)

x xbi
R

ai
R= � , (Eq. 103)
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( )














+

= EN
S

h

hR
c r

s
x

0

)(1-
��LL

ω
ω

, (Eq. 104)

x sdi
R F S

i= ⋅β � , (Eq. 105)

and .,R
di

R
ei xx �= (Eq. 106)

and the latter, x ra
C S

F Fh
= ( )

* * , (Eq. 107)

x xb
C

a
C= � , (Eq. 108)

( )














+== EN

S

h

hR
c

C
c r

s
xx

0

)(1-
��LL

ω
ω

, (Eq. 109)

x x sd
C

d
R F S

i= = ⋅β � , (Eq. 110)

and x x xe
C

e
R

d
C= = � . (Eq. 111)

Consider now the equation,

r r r rS F S F F F F F= + + . (Eq. 112)

Differentiating twice, under the prior assumption that N Sω is negligible, leads to the following two

equations:
S

S F
S

F F S F
F F

dr

dt

dr

dt
r

u= + ×
* *

*ω (Eq. 113)

and ( )
S

S F
S

F F S F
F F

S F S F
F F

d r

dt

d r

dt
r ru u h

2

2

2

2= + × + × ×
* *

α ω ω . (Eq. 114)

Linearizing about N Fω = 0  as before, the following interrelationships are found to hold for the two

sets of states:

( )x x Q r ra
R

a
C S F F

F F

S

F F= + +( ) ( )
* * , (Eq. 115)

x x Q r Q xb
R

b
C S F F

F F
S F T

e
R

u= − ×2 ( )
* , (Eq. 116)

� �
( ) ( )

*x x Q r I Mb
R

b
C S F F

F F
F

u= − × −1 . (Eq. 117)
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Designate by ( )S
br  the final two terms of Equation (115).  Substituting now from Equations (115),

(116), and (117) into Equations (62), (89), (90), (91), and (95) yields the following state equations

for MIM-2:

� ,x xa
C

b
C

= (Eq. 118)

�

,

( )

( ) ( ) ( ) ( )

*x
m

F x
m

F x
m

F Q r Q x

m
F u a a

m
F r

m
F

b
C

uta a
C

utb b
C

utb
S F F

F F
S F T

e
C

c
S

in
S

d uta
S

b
S

b

u=






+





+ −





+





− + +





+





×1 1 2

1 1 1
  (Eq. 119)

( )
�

( ) ( )

( )

( ) ( ) ( )

*

x
m

F Q r I M x
m

F Q r I M x

x Q r I M x

m
F Q r Q Q r I M Q r

c
C

h uta
S F F

F E uta a
C

h utb
S F F

F E utb b
C

h c
C

h
S F F

F E urd d
C

h utb
S F F

F F
S F T S F F

F E utb
S F F

F Fu u

= −



 + −





− −

+
−

+

× − × −

× −

× × −

ω ω

ω ω

ω

1 1

2
2

1 1

1

1

+

( )( )

× × −

× −

× − × −

−





+ −



 + + 





+ −



 + − +

S F T S F F
F E ure e

C

h c
S F F

F E c h
S

d h
S

b

h uta
S F F

F E uta
S

b h
S F F

F E
F

d
F

b

Q Q r I M x

m
F Q r I M u a

m
F

m
F Q r I M r Q r I M

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*

*

,

1

1

1 1

1 1

1

ω ω ω

ω ω α

(Eq. 120)

� ,x xd
C

e
C= (Eq. 121)

( )

�

.

( ) /

( ) ( ) ( )

*

x Q I M x Q I M x Q I M x

Q I M Q I M Q r Q x Q I M u

Q I M r Q I M

e
C S F

uta a
C S F

utb b
C S F

urd d
C

S F
ure

S F
utb

S F F
F F

S F T
e
C S F

c

S F
uta

S
b

S F F
d

F
b

u

= 





+ 





+ 





+ −





+ 





+ 





+ 



 +

− − −

− − × −

− −

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1 1 1

1 1 1

1 1α

(Eq. 122)

Again, for the small rotation angles associated with the MIM, S FQ  is approximately equal to the

3 3×  identity matrix; Equations (118) through (122) reduce to the following: 

� ,x xa
C

b
C

= (Eq. 123)
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,
11

1211

)()()()(

)(
*

b
S

b
S

utad
S

in
S

c
C
eFF

F
utb

C
butb

C
auta

C
b

F
m

rF
m

aa

uF
m

xrF
m

xF
m

xF
m

x
u






+





++−






+





−+





+







=
×

�

(Eq. 124)

( )

( )( ) ,

111

2
2

11

)(1)()(

)(1)()()(1)(

1)()(1)()(1)(

1)(1)(

*

**

*****

**

b
F

d
F

EF
F

h

b
S

utaEF
F

utahb
S

hd
S

hcEF
F

ch

C
eureEF

F
FF

F
utbEF

F
FF

F
utbh

C
durdEF

F
h

C
ch

C
butbEF

F
utbh

C
autaEF

F
utah

C
c

MIr

rMIrF
m

F
m

auMIrF
m

xMIrrMIrrF
m

xMIr

xxMIrF
m

xMIrF
m

x

uu

−×

−×−×

−××−××−×

−×−×

+−+






 −+





++





 −+






 −+−+−+

−




 −+





 −=

αω

ωωωω

ωω

ωωω�

(Eq. 125)

� ,x xd
C

e
C= (Eq. 126)

( ) .
2

1

2

1

2

1

2

1

2

1

2

1

2

1

)(1)()(1

1)(11

111

*

b
F

d
F

b
S

uta

c
C
eFF

F
utbure

C
durd

C
butb

C
auta

C
e

MIrMI

uMIxrMIMI

xMIxMIxMIx

u

−−

−×−−

−−−

+




+





+






+





 −+






+





+





=

α

�

(Eq. 127)

State-Space Equations Using Kane’s Dynamics [10]

The above state equations for MIM-2 can be derived alternatively, by the approach

commonly called “Kane’s Dynamics.”  First define generalized coordinates qi and generalized

speeds ui as follows.  [Note the use of post-superscripts now, instead of the previous post-

subscripts, with position (and, later, velocity and acceleration) vectors.  The post-subscript

position, with vectors, is used for another purpose in Kane’s notation, as will be seen.]

q r sF Fh
1 1= ⋅

* *

� , (Eq. 128)

q r sF Fh
2 2= ⋅

* *

� , (Eq. 129)

q r sF Fh
3 3= ⋅

* *

� , (Eq. 130)
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u s qN F
4 1 4= ⋅ =ω � � , (Eq. 131)

u s qN F
5 2 5= ⋅ =ω � � , (Eq. 132)

u s qN F
6 3 6= ⋅ =ω � � , (Eq. 133)

( )1777 ˆ0 srqqu EN
hh ⋅+−== ��� ωω , (Eq. 134)

( )2888 ˆ0 srqqu EN
hh ⋅+−== ��� ωω , (Eq. 135)

( )3999 ˆ0 srqqu EN
hh ⋅+−== ��� ωω , (Eq. 136)

u s qN S
10 1 10= ⋅ =ω � � , (Eq. 137)

u s qN S
11 2 11= ⋅ =ω � � , (Eq. 138)

u s qN S
12 3 12= ⋅ =ω � � , (Eq. 139)

u q1 1= � , (Eq. 140)

u q2 2= � , (Eq. 141)

and u q3 3= � . (Eq. 142)

Next determine useful velocities and angular velocities in terms of these generalized

coordinates and generalized speeds.  The angular velocities can be expressed as follows:

N S u s u s u sω = + +10 1 11 2 12 3� � � , (Eq. 143)

N F u s u s u sω = + +4 1 5 2 6 3� � � , (Eq. 144)

and ( ) ( ) ( )S F N F N S u u s u u s u u sω ω ω= − = − + − + −4 10 1 5 11 2 6 12 3
� � � . (Eq. 145)

The velocity of the flotor center-of-mass is 

( )v
d

dt
r r rF

N
N S S F F F= + +0 ( )= + × + + ×v r

d

dt
r rS N S S F

S
F F N S F Fω ω . (Eq. 146)
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In terms of the generalized coordinates and generalized speeds,

( )
( ) ( )

v v r s u q u q u

s u q u q u s u q u q u

F S N S S F
�

� � .

= + × + + −

+ + − + + −

ω 1 1 3 11 2 12

2 2 1 12 3 10 3 3 2 10 1 11

 (Eq. 147)

Accordingly, the respective velocities of the isolation point E , the eight actuator force-application

points Bi , and the umbilical-attachment point Fu , are as follows:

( )
( ) ( )

v v r s u q u q u

s u q u q u s u q u q u

r

E S N S S F

N F F E

= + × + + −

+ + − + + −

+ ×

ω

ω

*

*

�

� �

,

1 1 3 11 2 12

2 2 1 12 3 10 3 3 2 10 1 11  (Eq. 148)

( )
( ) ( )

,

ˆˆ

ˆ

*

*

1111023310312122

12211311

i

huui

BFFN

FSSNSB

r

uququsuququs

uququsrvv

×+

−++−++
−++×+=

ω

ω
 (Eq. 149)

( )
( ) ( )

.

ˆˆ

ˆand

*

*

1111023310312122

12211311

u

huuu

FFFN

FSSNSF

r

uququsuququs

uququsrvv

×+

−++−++
−++×+=

ω

ω
 (Eq. 150)

One can now express the linearized partial velocities (L.P.V.’s) and linearized partial

angular velocities (L.P.A.V.’s), corresponding to the foregoing velocities and angular velocities,

using the following notation:  v
v

ui
E

E

i

=
∂
∂

 is the partial velocity (P.V.) of point E with respect to the

ith generalized speed ui ,
N

i
F

N F

iu
ω

∂ ω
∂

= is the partial angular velocity (P.A.V.) of reference frame F

with respect to reference frame N, and l i
Ev and l

N
i
Fω are the respective linearized velocity terms.

Assume now that N Sω ≈ 0 , so that u u u10 11 12 0= = = .  Then v ii
Su = =0 10 11 12( , , ) .  Assume

additionally that the flotor mass is much smaller than that of the combined stator-plus-orbiter,  in
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which case S Fω does not affect vSu .  Then v ii
Su = =0 4 5 6( , , ) .  Similarly, since vSu is not affected

by r F Fh
* *

or ��r N E0 , v ii
Su = =0 1 2 3 7 8 9( , , , , , ) .  That is,

v ii
Su = =0 1 12( , . . . , ) . (Eq. 151)

Further, since vSu is unaffected by r F E*

, r F Bi
*

, or r F Fu
*

, one has the following L.P.V.’s and

L.P.A.V.’s:

l i
F

iv s i
*

� ( , , )= = 1 2 3 , (Eq. 152)

l i
Fv i

*

( ,. . . , )= =0 4 9 , (Eq. 153)

{ } { }8,...,1inand9,...,1in
*

jivvvv F
il

F
il

B
il

E
il

uj ∀∀=== , (Eq. 154)

l
S

i
F iω = =0 1 2 3 7 8 9( , , , , , ), (Eq. 155)

l
S F sω 4 1= � , (Eq. 156)

l
S F sω 5 2= � , (Eq. 157)

l
S F sω 6 3= � , (Eq. 158)

and l
N

i
F

l
S

i
F iω ω= =( , . . . , )1 9 . (Eq. 159)

All L.P.V.’s and L.P.A.V.’s associated with u10 , u11, and u12  are 0.

In order to determine the linearized accelerations (L.A.’s) and linearized angular

accelerations (L.A.A.’s), one must first determine the linearized velocities (L.V.’s) and the

linearized angular velocities (L.A.V.’s).  Assuming still that N Sω ≈ 0 , the L.V.’s and L.A.V.’s are

as follows:

l
F Sv v u s u s u su

*

� � �= + + +1 1 2 2 3 3 , (Eq. 160)

( )EFFS
l

SE
l rsususuvv u

*

332211 ˆˆˆ ×++++= ω , (Eq. 161)
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( )iui BFFS
l

SB
l rsususuvv

*

332211 ˆˆˆ ×++++= ω , (Eq. 162)

( )uuu FFFS
l

SF
l rsususuvv

*

332211 ˆˆˆ ×++++= ω , (Eq. 163)

l
N Sω = 0 , (Eq. 164)

and l
N F

l
S F u s u s u sω ω= = + +4 1 5 2 6 3� � � . (Eq. 165)

Differentiating the L.V.’s and L.A.V.’s, and linearizing about S Fω ≈ 0 , yields the

following L.A.’s and L.A.A.’s:

l
F Sa a u s u s u su

*

� � � � � �= + + +1 1 2 2 3 3 , (Eq. 166)

( )l
E S F Ea a u s u s u s u s u s u s ru= + + + + + + ×� � � � � � � � � � � �

*

1 1 2 2 3 3 4 1 5 2 6 3 , (Eq. 167)

( )l
B S F Ba a u s u s u s u s u s u s ri u i= + + + + + + ×� � � � � � � � � � � �

*

1 1 2 2 3 3 4 1 5 2 6 3 , (Eq. 168)

( )l
F S F Fa a u s u s u s u s u s u s ru u u= + + + + + + ×� � � � � � � � � � � �

*

1 1 2 2 3 3 4 1 5 2 6 3 , (Eq. 169)

l
N Sα = 0 , (Eq. 170)

and l
N F

l
S F u s u s u sα α= = + +� � � � � �4 1 5 2 6 3. (Eq. 171)

Beginning with Equation (3), one can also obtain readily an alternate expression for l
S Fα :

( )[ ]l
S F

ur d
F F

ut b
F B

c
i

i

I M M r F F r Fα = ⋅ + + × − + ×














−

=
∑1

1

8

(Eq. 172)

The final step, before writing the generalized active forces and generalized inertia forces of

Kane’s equations, is to determine the contributing loads:

The resultant of the actuator forces (cf. Eq. 44), which are considered to be applied at respective

locations Bi , is

( )F F I L B I Bc c
i

i
i i i i i

i

= = − ×
= =
∑ ∑

1

8

1

8

� � . (Eq. 173)
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The umbilical force (cf. Eq. 15), with the former term (in curly brackets) applied at Fu , and the

latter (umbilical bias force F b ) at F * , is

 ( ) ( ) b
i

ii
FF

N
i
tii

FFi
tut Fssr

dt

d
CssrKF uuhuuh +





















⋅−⋅−= ∑

=

3

1

ˆˆˆˆ . (Eq. 174)

The direct disturbance force (cf. Eq. 41), applied at F * , is F d  (unknown).

The umbilical moment (cf. Eq. 20), applied about F * , is

( )[ ] ( )[ ]{ }M K n s s C n s s Mur r
i F S

i i r
i F S

i i
i

b= − ⋅ − ⋅ +
=
∑ φ φ� � � � � � �φ φ

1

3

. (Eq. 175)

The direct disturbance moment (cf. Eq. 42), applied about F * , is M d  (unknown). (Eq. 176)

The above expressions for the contributing loads can also be written in measure-number

form, needed for eventual computer implementation.  Equation (173) becomes

[ ] [ ]( ) ( ) ( ) ( ) ( )
� � . . . � �S

c

S S F F S S F F

cF L I Q B B I L I Q B B I F I= − + + − =
× ×

1 1 1 1 1 8 8 8 8 8 , (Eq. 177a, b)

where [ ]I I I
T

= 1 8, . . . , . (Eq. 178)

Equation (174) is first re-expressed  as

( )[ ] ( ) b
i

ii
FFFFFF

N
i
tii

FFFFFFi
tut Fssrrr

dt

d
CssrrrKF uhhuhuhhuh +





















⋅++−⋅++−= ∑

=

3

1

ˆˆˆˆ
********

. (Eq. 179)

This now can readily be rewritten as

( ) ( ) ( ) ( )*S
ut uta utb

S
b utb

S F F F F S F T
uta
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bF F

q

q

q

F
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u

u

F F Q r Q

u

u

u

F ru=
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+×
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3

1

2

3

4

5

6

. (Eq. 180)

The direct disturbance force is simply ( )S
dF .
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Equation (175) becomes

( ) ( )~ ~F
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bM M

q

q

q
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u

u

u
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+

4

5

6

4
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, (Eq. 181)

where 
~ /M Q Kurd

S F T
r= − (Eq. 182)

and 
~ /M Q Cure

S F T
r= − . (Eq. 183)

The direct disturbance moment is ( )( ) ( )
F

d

F

dM I= ⋅α . (Eq. 184)

Using the expressions for the L.P.V.’s and the L.P.A.V.’s with the contributing loads, the

generalized active forces Qi can be determined as follows:
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F
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dF F F , (Eq. 185a, b)
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 ×+−×= ∑ , (Eq. 186a, b)

and
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7
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9

0

0

0

















=
















. (Eq. 187)
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The generalized inertia forces are

( )
( )
( )

Q
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v m a
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F
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F
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= − , (Eq. 188a, b)
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( ) ,α ωlinearizing about 0 (Eq. 189a, b)
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. (Eq. 190)

Kane’s Dynamical Equations for MIM can now be written in the following, recognizable

forms of Newton’s Second Law:

( ) ( ) ( ) ( ) *S
ut

S
c

S
d l

S FF F F m a+ + − = 0 , (Eq. 191)

where [cf. Eq. (166)] l
S F S

ina a

u

u

u

( ) ( )*

�

�

�

= +
















1

2

3

; (Eq. 192)

and    ( )[ ] ( )( )
( )

/ ( ) / ( ) /
( )S

F F
ut b

S

F B
c
i

i

S F F
ur

S F F
d

S F
F

l
S Fr F F r F Q M Q M Q I× − + ×







+ + − ⋅ =∑ α 0,  (Eq. 193)

where [cf. Eq. (171)] l
S S F

u

u

u

( )

�

�

�

α =
















4

5

6

. (Eq. 194)

These equations must now be placed into a usable state-space form.

Define the following: x

q

q

q
a =

















1

2

3

, (Eq. 195)
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x
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q

q
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=
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�
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�

� , (Eq. 196a, b, c)
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, (Eq. 197a, b, c, d)
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, (Eq. 198)
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4
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, (Eq. 199)

and u I= . (Eq. 200)

Note that Equations (196) and (199) express Kane’s Kinematical Equations.

Using state-definition equations (195), (196), and (199); force equations (177) and (180);

acceleration equation (192); and disturbance equations (40) and (41); Kane’s Dynamical Equation

(191) becomes

.
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×

�

(Eq. 201)

Likewise, using state-definition equations (195), (196), (198), and (199); force equations (177) and

(180); moment equations (82), (83), (181), and (184); angular acceleration equation (194); and
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disturbance equation (42); Kane’s Dynamical Equation (193) becomes

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

�
~ ~

~ ~

.

( ) /

( ) ( ) ( )

*

x Q I M x Q I M x Q I M x

Q I M Q I M Q r Q x Q I M u

Q I M r Q I M

e
S F

uta a
S F

utb b
S F

urd d

S F
ure

S F
utb

S F F
F F

S F T
e

S F
c

S F
uta

S
b

S F F
d

F
b

u

= + +

+ − +

+ + +

− − −

− − × −

− −

1 1 1

1 1 1

1 1     α

Eq. (202)

In terms of Euler parameters xd
S F S:= ( ) / β  [where F S/ β   is defined by Eq. (26)], for small rotation

angle φ and negligible angular velocityN Sω the rotational states are

 ~x xd d= 2 , (Eq. 203)

and ~x xe e= 2 . (Eq. 204)

Kinematical equations (196) and (199), and dynamical equations (201) and (202), now reduce to

the forms found previously, viz., Equations (123), (126), (124) and (127), respectively.

Concluding Remarks

This paper has presented the derivation of algebraic, state-space equations for the Canadian

Space Agency’s Microgravity Vibration Isolation Mount.  The states employed include payload

relative translational position ( )xa
C and velocity ( )xb

C , payload relative rotation ( )xd
C  and rotation

rate ( )xe
C , and payload translational acceleration ( )xc

C .  Feedback of xa
C  corresponds to a change in

effective umbilical translational stiffness, with the effective umbilical assumed to be attached at the

flotor center of mass.  Similarly, feedback of xb
C , xd

C , or xe
C  corresponds, respectively, to a change

in translational damping, rotational stiffness, or rotational damping, for the same effective

umbilical.  Likewise, feedback of payload translational acceleration causes a change in effective

payload mass.  Thus, a cost functional which penalizes these states produces an intuitive effect on

system effective stiffness, damping, and inertia values.
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The acceleration states can be selected to pertain to any arbitrary point on the flotor.  This

allows an optimal controller to be developed which penalizes directly the acceleration of any

significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-space form so that the powerful controller-design

methods of optimal control theory (e.g., H 2 synthesis, H∞ synthesis, µ synthesis, mixed-µ

synthesis, and µ analysis) can be used.  References [11], [12], and [13] detail the H 2  optimal

controller design approach used for MIM.
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